Redis-Backed Chat Memory
For longer-term persistence across chat sessions, you can swap out the default in-memory chatHistory
that backs chat memory classes like BufferMemory
for a Redis instance.
Setupβ
You will need to install node-redis in your project:
- npm
- Yarn
- pnpm
npm install @langchain/openai redis @langchain/community
yarn add @langchain/openai redis @langchain/community
pnpm add @langchain/openai redis @langchain/community
You will also need a Redis instance to connect to. See instructions on the official Redis website for running the server locally.
Usageβ
Each chat history session stored in Redis must have a unique id. You can provide an optional sessionTTL
to make sessions expire after a give number of seconds.
The config
parameter is passed directly into the createClient
method of node-redis, and takes all the same arguments.
import { BufferMemory } from "langchain/memory";
import { RedisChatMessageHistory } from "@langchain/redis";
import { ChatOpenAI } from "@langchain/openai";
import { ConversationChain } from "langchain/chains";
const memory = new BufferMemory({
chatHistory: new RedisChatMessageHistory({
sessionId: new Date().toISOString(), // Or some other unique identifier for the conversation
sessionTTL: 300, // 5 minutes, omit this parameter to make sessions never expire
}),
});
const model = new ChatOpenAI({
model: "gpt-3.5-turbo",
temperature: 0,
});
const chain = new ConversationChain({ llm: model, memory });
const res1 = await chain.invoke({ input: "Hi! I'm Jim." });
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chain.invoke({ input: "What did I just say my name was?" });
console.log({ res2 });
/*
{
res1: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- BufferMemory from
langchain/memory
- RedisChatMessageHistory from
@langchain/redis
- ChatOpenAI from
@langchain/openai
- ConversationChain from
langchain/chains
Advanced Usageβ
You can also directly pass in a previously created node-redis client instance:
import { Redis } from "ioredis";
import { BufferMemory } from "langchain/memory";
import { RedisChatMessageHistory } from "@langchain/community/stores/message/ioredis";
import { ChatOpenAI } from "@langchain/openai";
import { ConversationChain } from "langchain/chains";
const client = new Redis("redis://localhost:6379");
const memory = new BufferMemory({
chatHistory: new RedisChatMessageHistory({
sessionId: new Date().toISOString(),
sessionTTL: 300,
client,
}),
});
const model = new ChatOpenAI({
model: "gpt-3.5-turbo",
temperature: 0,
});
const chain = new ConversationChain({ llm: model, memory });
const res1 = await chain.invoke({ input: "Hi! I'm Jim." });
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chain.invoke({ input: "What did I just say my name was?" });
console.log({ res2 });
/*
{
res1: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- BufferMemory from
langchain/memory
- RedisChatMessageHistory from
@langchain/community/stores/message/ioredis
- ChatOpenAI from
@langchain/openai
- ConversationChain from
langchain/chains
Redis Sentinel Supportβ
You can enable a Redis Sentinel backed cache using ioredis
This will require the installation of ioredis in your project.
- npm
- Yarn
- pnpm
npm install ioredis
yarn add ioredis
pnpm add ioredis
import { Redis } from "ioredis";
import { BufferMemory } from "langchain/memory";
import { RedisChatMessageHistory } from "@langchain/community/stores/message/ioredis";
import { ChatOpenAI } from "@langchain/openai";
import { ConversationChain } from "langchain/chains";
// Uses ioredis to facilitate Sentinel Connections see their docs for details on setting up more complex Sentinels: https://github.com/redis/ioredis#sentinel
const client = new Redis({
sentinels: [
{ host: "localhost", port: 26379 },
{ host: "localhost", port: 26380 },
],
name: "mymaster",
});
const memory = new BufferMemory({
chatHistory: new RedisChatMessageHistory({
sessionId: new Date().toISOString(),
sessionTTL: 300,
client,
}),
});
const model = new ChatOpenAI({ temperature: 0.5 });
const chain = new ConversationChain({ llm: model, memory });
const res1 = await chain.invoke({ input: "Hi! I'm Jim." });
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chain.invoke({ input: "What did I just say my name was?" });
console.log({ res2 });
/*
{
res1: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- BufferMemory from
langchain/memory
- RedisChatMessageHistory from
@langchain/community/stores/message/ioredis
- ChatOpenAI from
@langchain/openai
- ConversationChain from
langchain/chains